
Introduction
• HuBMAP has over 4,300 datasets across 31 organs.  
• However, the lack of standardized cell type annotations 

remains a barrier to downstream analysis.  
• Recent work focuses on developing pipelines to preprocess, 

cluster, visualize and annotate cell types, but developing a 
useful, end-to-end cell type annotation pipeline requires high 
annotation accuracy and low human intervention. 

• We address this problem by comparing the accuracy of the 
cell type clustering methods (Leiden, FlowSOM, 
SpatialSort, and PIXIE) and testing feature engineering 
methods (use of cell morphology features and use of 
weighted marker features, respectively).

Clustering Methods
• Leiden clustering is a graph-based community-detection 

algorithm that partitions cells and optimizes a network. [1] 

• FlowSOM is a self-organizing map–based method that 
projects single-cell data onto a structured grid and refines 
the resulting nodes into clusters. [2] 

• SpatialSort is a Bayesian method that incorporates spatial 
neighborhood information into clustering. [3] 

• PIXIE is pixel-to-cell method that uses pixel-level 
phenotype features with cell-level aggregation. [4]

Feature Engineering Methods

Conclusion 
• In conclusion, FlowSOM clustering yielded the highest 

purity at 64.5% with unweighted markers and 66.90% with 
weighted markers on an annotated healthy human intestine 
dataset
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Dataset
• An annotated HuBMAP healthy intestine with 49 protein 

markers to retroactively compare accuracy of clustering and 
feature engineering. 

• Clustering method requires different features: Leiden and 
FlowSOM require protein markers, SpatialSort requires 
protein markers and spatial coordinates, and PIXIE requires 
raw expression and cell masks images.

CODEX images input Segmentation Z-normalized matrix
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Clustering Results
Ground Truth UMAP

Leiden UMAP

Leiden Cluster Purity

• Clustering with protein markers and cell morphology 
features: area, perimeter, major axis length, minor axis 
length, eccentricity, solidity, circularity, aspect ratio, 
equivalent diameter.

• Random Forest Mean Decrease in Impurity (MDI) feature 
weighting.

Clustering

Feature Engineering Results

Markers + Morphology  
UMAP
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SpatialSort Bar Chart

• Morphology features with markers and morphology 
features alone, when clustered using FlowSOM, had lower 
purity compared to the markers alone.

• Future work should focus on analyzing how improved 
protein marker prediction and cell segmentation affects 
clustering

• Random Forest MDI feature weighting with FlowSOM 
outperformed unweighted markers
Weighted Markers UMAP
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