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Surface electromyography (SEMGQG) is a method to detect and record the electrical - We evaluated two classifiers: Extremely Randomized Trees (Extralrees) and Ridge. Both used 30 resamples.
activity of muscles. Robust sEMG-based control is crucial for prosthetic hand function, * For the ExtraTrees classifier, we varied “max features,” which is the maximum number of features ExtraTrees
yvet roughly one-third of upper-limb amputees abandon sEMG prostheses due to limited considers when splitting a node. ExtraTrees used 200 estimators.
control reliability. » We performed subject-specific classification: for each subject and resample, each class contributed 4 training trials,
* In response, we propose using QUANT, a interval feature extraction method that 1 validation trial, and 1 test trial.

computes sorted signal values (quantiles) from fixed-length time intervals. » We also tested cosine similarity features with ExtraTrees.
- We aim to assess whether these features, paired with machine-learning classifiers, 7| Tidge classiication

can improve movement-classification accuracy for prosthetic control applications.
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» We used the publicly available NinaPro DB7 dataset [1].

- The DB7 dataset contains sEMG measurements recorded from 20 subjects.

» 12 sensors were placed around the forearm: eight sensors equally spaced around the
radiohumeral joint and four sensors on the flexor digitorum, extensor digitorum, biceps,
and triceps. | |

» Subjects performed two exercises: 17 finger/wrist movements and 23 grasping and \ rig 7. Algorithm Flow ,
functional movements.

Cosine similarity feature
extraction
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=R - QUANT features with the ExtraTrees classifier had test accuracies ranging from 0.8468 + 0.0304 at depth 1 (138,108
~—E features) to 0.9234 + 0.0249 at depth 4 (845,964 features).
* QUANT features with the Ridge classifier had test accuracies ranging from 0.8554 + 0.0388 at depth 1 to 0.8956 +
ot o - 0.0397 at depth 4.
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MOVEMENT o MOVEMENT O 2y Cosine similarity features (66) with ExtrgTreeS yielded test accuracies ranging from 0.8473 + 0.0463 with max
¢ CONTROL ﬁ - features setto 16 to 0.8150 + 0.0500 with max features set to 1024.
] 1 : - All experiments were conducted on an 8-core CPU laptop.
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METHODS: FEATURE EXTRACTION
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- A set of representative quantiles from each sorted interval formed the features. - Cos Accuracy vs Max Features  Cos Compute Time vs Max Features
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+ Each sEMG time series was divided into fixed intervals at multiple depth levels, with R o o0 O
depth controlling the number of features. 0.890 - 00 O | g
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d=4 2 intervals _ _ _ _ _ _
d = 4 (shift - QUANT delivers state-of-the-art accuracy for multi-class sEMG and is computationally lightweight.
= . . . « Cosine similarity features with the ExtraTrees classifier delivers moderate-accuracy and low runtime, a suitable
ig 4. An illustration of the set of intervals for depth of _ _ _ , , ,
d = 4, including ‘shifted’ intervals for d > 1 [2]. , alternative for quick prosthetic calibration or low-resource settings.
f W\ .- - * Practically, a prosthetic controller could use QUANT features with the ExtraTrees classifier where resources allow, to
VN f N/ »\ ) /1 ™ 16 intervals maximize accuracy, or fall back to cosine features alone when speed and simplicity are paramount.
' “\,\ wa  Improving dependable sEMG pattern recognition along this accuracy—latency continuum can reduce control
3 frustration, potentially lowering prosthesis rejection and enhancing user quality of life.
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