
Computational Pipeline for Cell Type Annotation of HuBMAP Spatial-omics Data
Zachary Deutsch, Yang Miao, John Hickey

Department of Biomedical Engineering, Duke University, Durham, NC

METHODS: DOTPLOT GENERATION AND PRELIMINARY CLUSTER LABELING

METHODS: DATA PREPROCESSING

METHODS: SPATIAL VISUALIZATION WITH VITESSCE

INTRODUCTION

ACKNOWLEDGMENTS

Website

Biomedical Engineering

REFERENCES

• We standardize the marker names across all datasets to keep the cell type resolution consistent. 
• The markers that are present in all datasets are preserved for downstream processing.  
• We identify and retain 49 markers that are present in all of the datasets.  
• The 64 individual datasets are then merged into one .csv file.  
• For unsupervised clustering, all markers are z-normalized for each donor to ensure that one marker is 

not dominating just because of a higher signal range than another.  
• We then remove noise to eliminate cells that stain positive for too many markers in the CODEX 

multiplex tissue imaging experiments by Z-score thresholding and setting low nuclear intensity 
cutoffs.

Open data facilitates scientific collaboration 
by allowing researchers to leverage, share, 
and combine data. The Human 
BioMolecular Atlas Program (HuBMAP) is 
a research consortium focused on collecting 
single-cell datasets of healthy organs of the 
human body.  
• However, many HuBMAP Co-detection 

by indexing (CODEX) datasets lack cell 
type annotations.  

• Our group is using our background in 
spatial-omics data analysis to annotate 
these datasets. 

• We have created an end-to-end Jupyter 
Notebook that can be used with the 
HubMAP virtual workspace to annotate 
these datasets within the HuBMAP Data 
Portal.

• We use Vitessce, a spatial dataset visualization tool, to visualize the clusters on the original image and evaluate the clustering results by 
overlaying cell marker expression and cluster assignments.  

• This is important because sometimes a cluster will not show high staining for any markers, appear as an artifact, or is impure.  
• After identifying and reclustering clusters that contain mixed cell types or artificial cells, we revise our initial cell type annotations.
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CONCLUSION AND FUTURE WORK

• We have created a computational pipeline for cell type 
annotation of small and large intestine HuBMAP spatial-
omics data.  

• In the future, we aim to annotate other organs on the 
HuBMAP Data portal, such as the lymph nodes, spleen, 
and thymus.  

• These will provide valuable annotations that will enable 
scientists to both study how the body is organized and 
act as a healthy reference to diseased datasets they 
collect.

• Using the combination of markers expressed and relative expression levels, each cluster is assigned to a cell type, or designated 
recluster/subcluster.
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Fig. 9. Vitessce Spatial Visualization

METHODS: LEIDEN CLUSTERING

• We perform harmony batch correction to adjust for systematic differences that arise between donor, sample, or slide number. 
• We employ Leiden Clustering, a type of unsupervised clustering, to annotate the cell types. 
• We compute the nearest neighbors distance matrix and a neighborhood graph of observations for use in Leiden Clustering.  
• Using the rapids-single cell package, we GPU-accelerate Leiden Clustering for cell types. 
• We prefer to overcluster as it helps with separating noisy clusters and makes it easier to have pure clusters and introduce bias into 

the clusters through subsequent subclustering/reclustering. 

Fig. 6c. UMAP Plot For Visualizing Clusters
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Fig. 1. HuBMAP Data Portal

• For the purpose of our pipeline, we 
choose processed CODEX from the 
small and large intestine. 

• We retrieve 8 datasets each from 8 
donors, or 64 total datasets. 

• The marker expression profile for 
each single cell, as well as its spatial 
coordinate information, is then 
extracted for downstream analysis.

METHODS: HUBMAP DATASET EXTRACTION

Fig. 8. Cell Counts Per Subset of 
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Fig. 3. Small and Large Intestine Codex Datasets
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Fig. 2. HubMAP Virtual Workspace
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Fig. 10. Spatial Map 
of Intestine With 

Cell Types Labeled 


